Closed questions

Question 1H (2 p.) The graph of $f(x) = x^2 + px + r$ has a minimum value when x = -1. The distance between the two zeros of f is 6. Then:

A. p = 1, r = -2 **B.** p = 2, r = -8 **C.** p = -1, r = 2 **D.** p = 2, r = 3

Question 2H (2 p.)

In an aritmetic sequence $a_1, a_2, ..., a_n, a_{n+1}, ...$ we have: $a_1 = 2, a_n = 5$ and $S_n = a_1 + a_2 +, ... + a_n = 24, 5.$ Then the sum $S_{2n} = a_1 + a_2 +, ... + a_{2n}$ is equal to: **A.** 63 **B.** 66, 5 **C.** 73, 5 **D.** 80

Question 3H (2 p.)

If $\operatorname{ctg} \alpha = 3$, then $\cos 2\alpha$ is equal to:

A. $\frac{4}{5}$ B. $\frac{7}{8}$ C. $\frac{3}{5}$ D. $\frac{7}{16}$

Question 4H (2 p.)

The polynomial $x^4 + 16$ is divisible by the polynomial: **A.** x + 2 **B.** $x^2 + 4$ **C.** $x^2 - 2\sqrt{2}x + 4$ **D.** $x^2 + 2\sqrt{2}x - 4$

Question 5H (2 p.)

Let $\log_2 3 = a$. Then the number $\log_{\sqrt{6}} 2 \cdot \log_{\sqrt{3}} 6$ is equal to:

A. $\frac{4}{a}$ **B.** $\frac{a}{a+1}$ **C.** $1 + \frac{1}{a}$ **D.** $\frac{a}{2}$

Question 6H (2 p.)

The limit of the sequence $a_n = \frac{1+4+7+\dots+(3n-2)}{2+4+\dots+2n}$ is equal to: **A.** $\frac{1}{4}$ **B.** $\frac{1}{2}$ **C.** 1 **D.** $\frac{3}{2}$

Question 7H (2 p.)

From the set of digits $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ two are drawn at random without returning. The probability that their product is divisible by 8 is equal to:

A.
$$\frac{1}{3}$$
 B. $\frac{19}{45}$ C. $\frac{19}{90}$ D. $\frac{6}{15}$

Question 8H (2 p.)

Points A(-1, -3) and B(1, 3) are two vertices of an equilateral triangle. Then the third vertex of this triangle, located in the second quadrant of the coordinate system, is:

A.
$$C(-3,1)$$
 B. $C\left(-\frac{5}{2},\frac{1}{2}\right)$ **C.** $C(-3\sqrt{3},\sqrt{3}),$ **D.** $C(-2\sqrt{3},2)$