Closed questions

Question 1H (2p.) The graph of $f(x)=x^{2}+p x+r$ has a minimum value when $x=-1$. The distance between the two zeros of f is 6 . Then:
A. $p=1, r=-2$
B. $p=2, r=-8$
C. $p=-1, r=2$
D. $p=2, r=3$

Question 2H (2p.)
In an aritmetic sequence $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots$ we have:

$$
a_{1}=2, a_{n}=5 \text { and } S_{n}=a_{1}+a_{2}+\ldots+a_{n}=24,5 .
$$

Then the sum $S_{2 n}=a_{1}+a_{2}+, \ldots+a_{2 n}$ is equal to:
A. 63
B. 66,5
C. 73,5
D. 80

Question 3H (2 p.)
If $\operatorname{ctg} \alpha=3$, then $\cos 2 \alpha$ is equal to:
A. $\frac{4}{5}$
B. $\frac{7}{8}$
C. $\frac{3}{5}$
D. $\frac{7}{16}$

Question 4H (2 p.)
The polynomial $x^{4}+16$ is divisible by the polynomial:
A. $x+2$
B. $x^{2}+4$
C. $x^{2}-2 \sqrt{2} x+4$
D. $x^{2}+2 \sqrt{2} x-4$

Question 5H (2p.)
Let $\log _{2} 3=a$. Then the number $\log _{\sqrt{6}} 2 \cdot \log _{\sqrt{3}} 6$ is equal to:
A. $\frac{4}{a}$
B. $\frac{a}{a+1}$
C. $1+\frac{1}{a}$
D. $\frac{a}{2}$

Question 6H (2 p.)

The limit of the sequence $a_{n}=\frac{1+4+7+\cdots+(3 n-2)}{2+4+\cdots+2 n}$ is equal to:
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. $\frac{3}{2}$

Question 7H (2 p.)
From the set of digits $\{0,1,2,3,4,5,6,7,8,9\}$ two are drawn at random without returning. The probability that their product is divisible by 8 is equal to:
A. $\frac{1}{3}$
B. $\frac{19}{45}$
C. $\frac{19}{90}$
D. $\frac{6}{15}$

Question 8H (2p.)
Points $A(-1,-3)$ and $B(1,3)$ are two vertices of an equilateral triangle. Then the third vertex of this triangle, located in the second quadrant of the coordinate system, is:
A. $C(-3,1)$
B. $C\left(-\frac{5}{2}, \frac{1}{2}\right)$
C. $C(-3 \sqrt{3}, \sqrt{3})$,
D. $C(-2 \sqrt{3}, 2)$

