Open questions

Question 1H.(2 p.)
Solve the equation $\left|x^{2}-2\right|=2 x-1$.

Question 2H.(6 p.)
For which values of parameter m does the polynomial

$$
f(x)=2 x^{3}-(2+m) x^{2}+(2 m+2) x-m-2
$$

have three different real roots x_{1}, x_{2}, x_{3} for which $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \geqslant 0$?

Question 3H(4 p.)

We are given the lengths of two sides of a triangle - a and b. Calculate the length of the third side, knowing that the sum of two heights of the triangle to the sides a and b is equal to the third height. Make a drawing.

Question 4H(4 p.)

Solve the inequality $\sin ^{4} x+\cos ^{4} x \leqslant \frac{3}{4}$.

Question 5H(4 p.)
On the graph of the function $y=\sqrt{2 x}$ find a point which is closest to the point $P(3,0)$. Make a drawing.

Question 6H(6 p.)

Acute angle of a parallelogram is equal to 45°. The point of intersections of its diagonals is at distances of 1 and $\sqrt{2}$ from sides. Calculete the area of this parallelogram and the lengths of diagonals. Make a drawing.

Question 7H(8p.)

The base of a pyramid is a trapezoid with a circumference of 32 . One base of the trapezoid is 3 times longer then the other base. All side edges of the pyramid slope to the base at an angle of 60°. Find the volume of the pyramid, given that into the base can be inscribed a circle. Make a drawing.

