Question 1S. (1 pkt)
The number $(\sqrt{27}-\sqrt{12})^{3}$ is equal to:
A. $3 \sqrt{3}$
B. $\sqrt{15}$
C. $\sqrt{18}$
D. $\sqrt{3}$

Question 2S.(1 pkt)

A company's share price rose by 20% in the first week after entering the stock market. Unfortunately, two months after the outbreak of the pandemic their price decreased by the same percentage amount. The current share price is $x \%$ of the starting price, where x is equal to:
A. $x=90$
B. $x=95$;
C. $x=96$
D. $x=98$

Question 3S. (1 pkt)
The number $2 \log _{3} \sqrt{12}-\left(\log _{2} \sqrt{3}\right)^{-1}$ is equal to:
A. $\log _{3} 2$
B. 1
C. $\log _{2} 3$
D. $\sqrt{3}$

Question 4S.(1 pkt)

The sum of all solutions of the equation $\left(2 x-x^{2}\right)\left(x^{2}+3 x\right)\left(x^{2}-2\right)=0$ is equal to:
A. 1
B. 2
C. -2
D. -1

Question 5S. (1 pkt)
The set of all solutions of the inequality $\frac{2-x}{3}-\frac{x-3}{4} \geqslant \frac{4-x}{6}$ is:
A. $(-\infty,-1]$
B. $(-\infty, 1]$
C. $[3, \infty)$
D. $\left(-\infty, \frac{9}{5}\right]$

Question 6S.(2 pkt)
Three consecutive terms of an increasing geometric sequence are $x-3,6, x+2$. Hence x is equal to:
A. 2
B. $\sqrt{3}$
C. 3
D. 7

Question 7S. (1 pkt)
The diagonals of an parallelogram have lengths 8 and 12 and intersect at an angle 30°. The area of this parallelogram is equal to
A. 18
B. $12 \sqrt{3}$
C. 24
D. $\sqrt{42}$

Question 8S.(1 pkt)

Lines $k: y=-\frac{3}{2} x+1$ and $l: m x+2 x-m y-y-2=0$ are perpendicular for:
A. $m=2$
B. $m=-3$
C. $m=-4$
D. $m=4$

Question 9S. (2 pkt)
In a right-angled triangle $A B C$ we have: $|B C|=6,|C A|=8$.
The line $D E$ is perpendicular to the hypotenuse $A B$ and $|A E|=3|E B|$ (see drawing). Then area of triangle $B D E$ is equal to:
A. 4
B. $\frac{25}{6}$
C. $\frac{5}{2}$
D. 2

Question 10S.(2 pkt)

Points A, B, C i D lie on a circle with a center S. Tangent to the point A and the line $A D$ form an angle of 46°. The angle $B D C$ is equal to 32° (see drawing). Under the above conditions lines $A C$ and $B D$ intersect at an angle of:
A. 64°
B. 42°
C. 78°
D. 46°

Question 11S. (1 pkt)
Points A, B, P lie on a circle with a center S and radius equal to 1 , whereby the quadrangle $A S B P$ is a rhombus (see drawing).
Then the market area is equal to:
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{5}$

Question 12S.(1 pkt)
In a right-angled triangle $A B C$, the vertex of the right angle is at the point $C(1,2)$. Point $S(3,3)$. is at the center of hypotenuse and the triangle $S B C$ is equilateral. Then the area of triangle $A B C$ is equal to:
A. $\frac{5 \sqrt{3}}{2}$
B. $\frac{5 \sqrt{3}}{4}$
C. $2 \sqrt{5}$
D. $\frac{3 \sqrt{5}}{2}$

Question 13S. (1 pkt)
The number of all even four-digit numbers divisible by 5 , with unique digits is equal to:
A. 504
B. 1008
C. 648
D. 816

Question 14S.(2 pkt)
The base of the pyramid is a square with a side length of a. One of the edges of this pyramid is perpendicular to the base and has length a as well (see drawing). The total area of this pyramid is equal to:
A. $a^{2}(2+\sqrt{2})$
B. $4 a^{2}$
C. $a^{2}(1+\sqrt{2})$
D. $a^{2}(3-\sqrt{2})$

